

A Neighbourhood Framework for Resource-Lean Content Flagging

Sheikh Muhammad Sarwar^{1,2}, Dimitrina Zlatkova³, Momchil Hardalov^{3,4}, Yoan Dinkov³, Isabelle Augenstein^{3,5}, Preslav Nakov^{3,6} ¹Amazon.com, ²University of Massachusetts, Amherst, ³Checkstep Research ⁴Sofia University "St. Kliment Ohridski", ⁵University of Copenhagen, ⁶Qatar Computing Research Institute, HBKU

checkstep

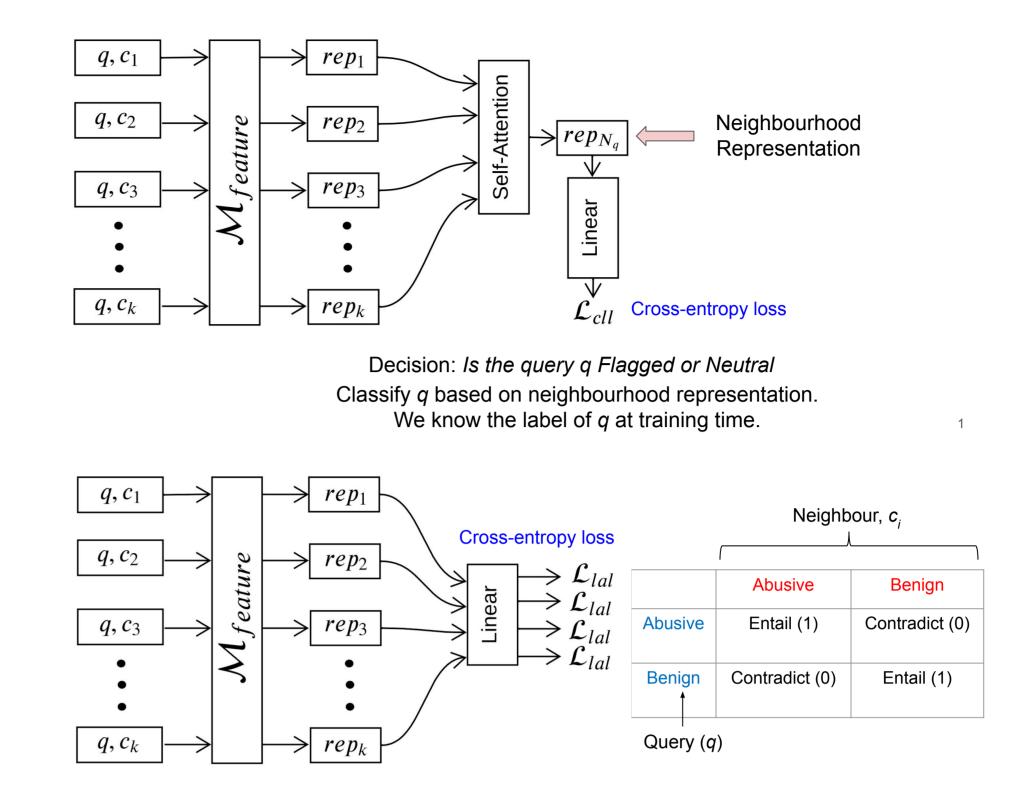
<u>CHR</u>

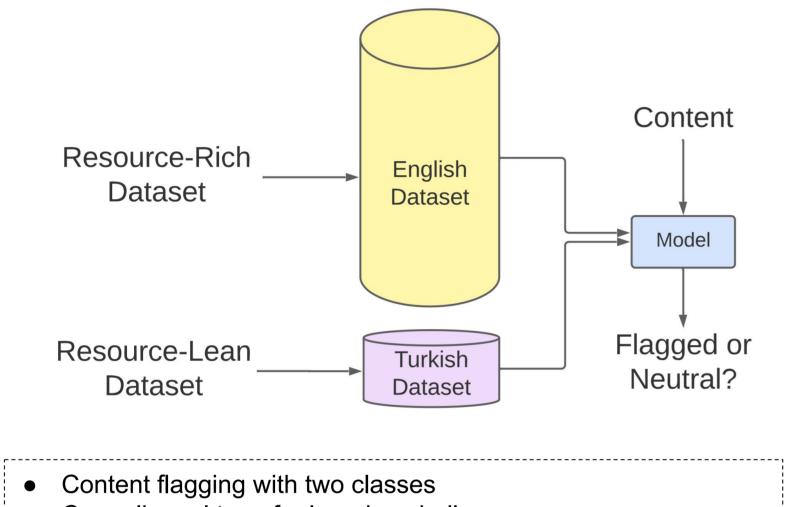
Cross-Lingual Abusive Language Flagging

- Online abusive language harms users of online platforms and has the potential to incite violence [Muller and Schwarz, 2018].
- Types of abusive language that online platforms want to flag:
 - Hate speech
 - Offensive language
 - Cyberbullying
 - Hostile flames
 - Vulgar language
 - Insults
 - Profanity
 - 0...
- Inflammatory content on FB was up 300% before Delhi Riots
 - The New York Times had said that of India's 22 officially recognised languages, Facebook has trained its AI systems on five. But in Hindi and Bengali, it still did not have enough data to adequately police the content, and much of the content targeting Muslims "is never flagged or actioned."¹

Problem Definition

Cross-Encoder Architecture

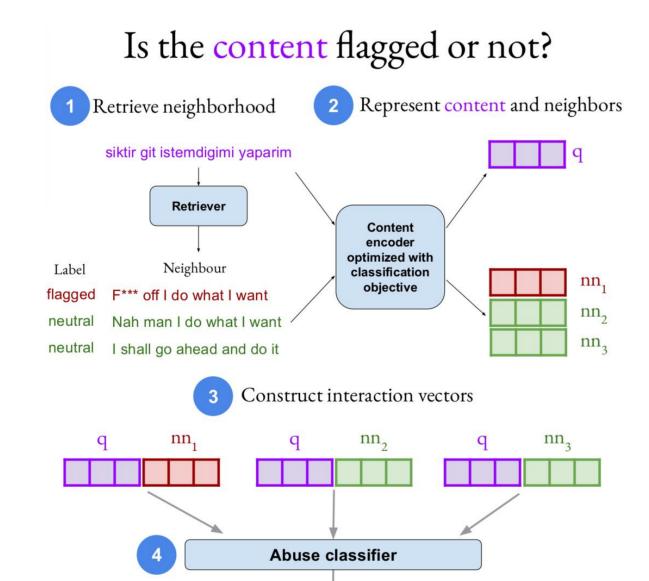




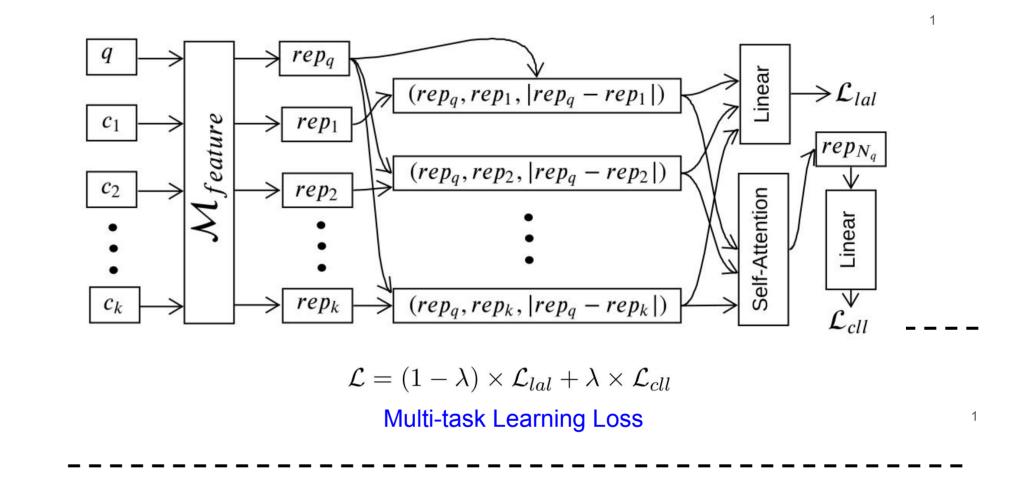
• Cross-lingual transfer learning challenge

Our Proposed Framework (*k*NN+)

- Interaction vectors (core contribution)
- No explicit voting
- Understanding the neighborhood at representation level



Bi-Encoder Architecture



Result: Cross-Lingual Transfer Learning

#	Method	Jigsaw Multilingual			WUL					
		ES	IT	TR	DE	EN	HR	RU	SQ	TR
1	Lexicon	35.8	40.5	34.0	70.9	70.6	63.9	63.6	58.2	71.8
2	FastText	55.3	47.2	64.2	74.2	72.7	58.9	74.2	65.9	72.5
3	XLM-R Target	63.5	56.4	80.6	82.1	75.7	73.2	76.7	77.3	78.8
4	XLM-R Mix-Adapt	64.2	58.5	76.1	83.2	93.9	87.3	82.1	86.2	86.0
5	XLM-R Seq-Adapt	60.5	58.3	81.2	83.9	88.0	80.0	80.0	86.3	83.
6	LaBSE-kNN	44.7	48.5	66.0	70.8	77.1	84.1	79.1	83.1	75.0
7	Weighted LaBSE-kNN	44.8	38.3	52.1	71.7	85.4	82.4	79.5	83.7	81.0
8	$CE kNN^+ + \mathcal{M}_{feature}^{XLM-R}$	58.9	<u>63.8</u>	78.5	80.4	83.8	86.2	77.6	83.5	85.
9	$CE kNN^+ + \mathcal{M}_{feature}^{P-XLM-R}$	59.4	67.0	84.4	84.8	88.0	86.3	83.8	83.0	86.
10	$\operatorname{CE} k\operatorname{NN}^+ + \mathcal{M}_{feature}^{\operatorname{P-XLM-R}} \to \operatorname{SRC}$	61.2	61.1	85.0	89.5	<u>92.3</u>	90.6	84.9	<u>89.5</u>	87.
11	BE $kNN^+ + \mathcal{M}_{feature}^{XLM-R}$	52.2	60.3	75.0	81.6	80.8	77.9	78.0	79.6	79.
12	BE $kNN^+ + \mathcal{M}_{feature}^{P-XLM-R}$	58.8	56.6	80.6	83.8	86.9	82.2	86.9	84.9	83.
13	BE $kNN^+ + \mathcal{M}_{feature}^{P-XLM-R} \rightarrow SRC$	59.1	59.5	81.6	88.7	90.7	87.6	86.3	90.2	88.

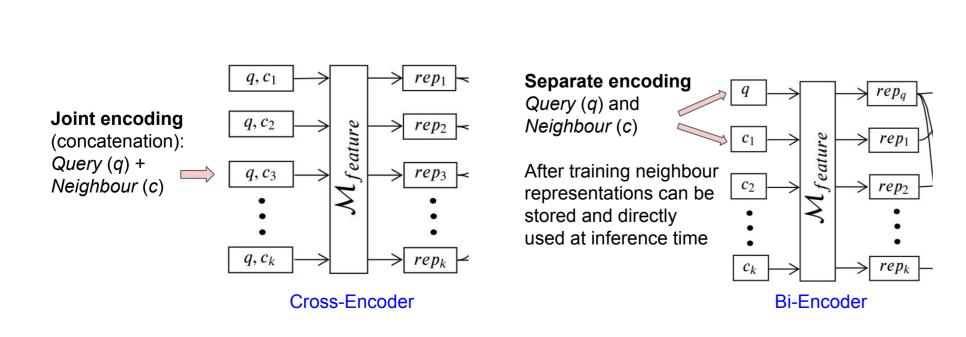
* The feature extractor model could be *XLM-R* and *P-XLM-R*¹.

** **SRC** indicates we pre-trained the neighbourhood model by using Jigsaw English as sources of query and neighbours.

Result: Examples of Nearest Neighbors

flagged

Turkish Query (flagged): siktir git istemdigimi yaparim



- Two choices for M_{feature}
 - XLM-R (base model)

Query-Neighbor Interactions

P-XLM-R – XLM-R trained with paraphrastic knowledge based on a large number of paraphrases

Text	BE kNN^+	LaBSE	Label	
	Score	Score		
off i do what i want	0.99	0.88	flagged	
you i do what i want	1.0	0.84	flagged	
i have going to do what ever i want	-0.19	0.83	neutral	
u i will do as i please	1.0	0.81	flagged	
off off i do what i want	1.0	0.77	flagged	
nah man i do wat i want	-0.19	0.75	neutral	
i shall go ahead and do it	-0.18	0.74	neutral	
whaaat whateva i do what i want"	-0.2	0.72	neutral	
ok i will do it	-0.17	0.69	neutral	
great i will do what you are saying	-0.16	0.68	neutral	

Conclusions

- Re-rank items based on BE kNN+ scores and compute majority voting at rank 5
- Neighbourhood framework is effective for cross-lingual transfer learning
- Separate encoding of query and neighbours are effective
 - Possible to store dense vector representation of the neighbourhood database
 - Inference: retrieve neighbourhood and classify content
 - Neighbourhood database enrichment without re-training
- Explanation of classification decision based on influential neighbours